首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8784篇
  免费   1273篇
  国内免费   759篇
  2024年   25篇
  2023年   280篇
  2022年   236篇
  2021年   573篇
  2020年   688篇
  2019年   914篇
  2018年   605篇
  2017年   385篇
  2016年   430篇
  2015年   400篇
  2014年   562篇
  2013年   678篇
  2012年   388篇
  2011年   455篇
  2010年   334篇
  2009年   404篇
  2008年   408篇
  2007年   399篇
  2006年   382篇
  2005年   347篇
  2004年   298篇
  2003年   256篇
  2002年   199篇
  2001年   130篇
  2000年   116篇
  1999年   97篇
  1998年   95篇
  1997年   68篇
  1996年   64篇
  1995年   58篇
  1994年   54篇
  1993年   58篇
  1992年   37篇
  1991年   32篇
  1990年   40篇
  1989年   27篇
  1988年   31篇
  1987年   33篇
  1986年   27篇
  1985年   33篇
  1984年   33篇
  1983年   21篇
  1982年   26篇
  1981年   16篇
  1980年   20篇
  1979年   7篇
  1978年   11篇
  1977年   6篇
  1976年   8篇
  1974年   8篇
排序方式: 共有10000条查询结果,搜索用时 203 毫秒
1.
Mutual information and entropy transfer analysis employed on two inactive states of human beta-2 adrenergic receptor (β2-AR) unraveled distinct communication pathways. Previously, a so-called “highly” inactive state of the receptor was observed during 1.5 microsecond long molecular dynamics simulation where the largest intracellular loop (ICL3) was swiftly packed onto the G-protein binding cavity, becoming entirely inaccessible. Mutual information quantifying the degree of correspondence between backbone-Cα fluctuations was mostly shared between intra- and extra-cellular loop regions in the original inactive state, but shifted to entirely different regions in this latest inactive state. Interestingly, the largest amount of mutual information was always shared among the mobile regions. Irrespective of the conformational state, polar residues always contributed more to mutual information than hydrophobic residues, and also the number of polar-polar residue pairs shared the highest degree of mutual information compared to those incorporating hydrophobic residues. Entropy transfer, quantifying the correspondence between backbone-Cα fluctuations at different timesteps, revealed a distinctive pathway directed from the extracellular site toward intracellular portions in this recently exposed inactive state for which the direction of information flow was the reverse of that observed in the original inactive state where the mobile ICL3 and its intracellular surroundings drove the future fluctuations of extracellular regions.  相似文献   
2.
1. Ant–plant mutualisms have been the focus of considerable empirical research, but few studies have investigated how introduced ants affect these interactions. Using 2 years of survey data, this study examines how the introduced Argentine ant [Linepithema humile (Mayr)] differs from native ants with respect to its ability to protect the extrafloral nectary‐bearing coast barrel cactus (Ferocactus viridescens) in Southern California. 2. Eighteen native ant species visited cacti in uninvaded areas, but cacti in invaded areas were primarily visited by the Argentine ant. The main herbivore of the coast barrel cactus present at the study sites is a leaf‐footed bug (Narnia wilsoni). 3. Herbivore presence (the fraction of surveys in which leaf‐footed bugs were present on individual cacti) was negatively related to ant presence (the fraction of surveys in which ants were present on individual cacti). Compared with cacti in uninvaded areas, those in invaded areas were less likely to have herbivores and when they did had them less often. 4. Seed mass was negatively related to herbivore presence, and this relationship did not differ for cacti in invaded areas versus those in uninvaded areas. 5. Although the Argentine ant might provide superior protection from herbivores, invasion‐induced reductions in ant mutualist diversity could potentially compromise plant reproduction. The cumulative number of ant species on individual cacti over time was lower in invaded areas and was associated with a shortened seasonal duration of ant protection and reduced seed mass. These results support the hypothesis that multiple partners may enhance mutualism benefits.  相似文献   
3.
《Developmental cell》2023,58(12):1087-1105.e4
  1. Download : Download high-res image (156KB)
  2. Download : Download full-size image
  相似文献   
4.
5.
6.
The NADPH-dependent reduction of some photosynthetic electron carriers in the dark, and the reduction of NADP+ associated with the glycolytic sequence and the oxidative pentose phosphate pathway in chloroplasts are reviewed. The postulated pathways of electron transports sensitive and insensitive to antimycin A are also evaluated. It is proposed that the electron flow, predominantly through cytochrome bf complex, may be also involved in the pathway of NADPH-dependent and antimycin A-insensitive back electron transport. An information on the chlororespiration in higher plants is also included. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
7.
8.
ObjectiveThrough metabolomics method, the objective of the paper is to differentially screen serum metabolites of GDM patients and healthy pregnant women, to explore potential biomarkers of GDM and analyze related pathways, and to explain the potential mechanism and biological significance of GDM.MethodsThe serum samples from 30 GDM patients and 30 healthy pregnant women were selected to conduct non-targeted metabolomics study by liquid chromatography-mass spectrometry. The differential metabolites between the two groups were searched and the metabolic pathway was analyzed by KEGG database.ResultsMultivariate statistical analysis found that serum metabolism in GDM patients was different significantly from healthy pregnant women, 36 differential metabolites and corresponding metabolic pathways were identified in serum, which involved several metabolic ways like, fatty acid metabolism, butyric acid metabolism, bile secretion, and amino acid metabolism.ConclusionThe discovery of these biomarkers provided a new theoretical basis and experimental basis for further study of the early diagnosis and pathogenesis of GDM. At the same time, LC-MS-based serum metabolomics methods also showed great application values in disease diagnosis and mechanism research.  相似文献   
9.
In the developing wheat grain, photosynthate is transferred longitudinally along the crease phloem and then laterally into the endosperm cavity through the crease vascular parenchyma, pigment strand and nucellar projection. In order to clarify this cellular pathway of photosynthate unloading, and hence the controlling mechanism of grain filling, the potential for symplastic and apoplastic transfer was examined through structural and histochemical studies on these tissue types. It was found that cells in the crease region from the phloem to the nucellar projection are interconnected by numerous plasmodesmata and have dense cytoplasm with abundant mitochondria. Histochemical studies confirmed that, at the stage of grain development studied, an apoplastic barrier exists in the cell walls of the pigment strand. This barrier is composed of lignin, phenolics and suberin. The potential capacity for symplastic transfer, determined by measuring plasmodesmatal frequencies and computing potential sucrose fluxes through these plasmodesmata, indicated that there is sufficient plasmodesmatal cross-sectional area to support symplastic unloading of photosynthate at the rate required for normal grain growth. The potential capacity for membrane transport of sucrose to the apoplast was assessed by measuring plasma membrane surface areas of the various cell types and computing potential plasma membrane fluxes of sucrose. These fluxes indicated that the combined plasma membrane surface areas of the sieve element–companion cell (se–cc) complexes, vascular parenchyma and pigment strand are not sufficient to allow sucrose transfer to the apoplast at the observed rates. In contrast, the wall ingrowths of the transfer cells in the nucellar projection amplify the membrane surface area up to 22-fold, supporting the observed rates of sucrose transfer into the endosperm cavity. We conclude that photosynthate moves via the symplast from the se–cc complexes to the nucellar projection transfer cells, from where it is transferred across the plasma membrane into the endosperm cavity. The apoplastic barrier in the pigment strand is considered to restrict solute movement to the symplast and block apoplastic solute exchange between maternal and embryonic tissues. The implications of this cellular pathway in relation to the control of photosynthate transfer in the developing grain are discussed.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号